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a b s t r a c t

Behavior rests on the experience of reinforcement and punishment. It has been unclear
whether reinforcement and punishment act as oppositely valenced components of a single
behavioral factor, or whether these two kinds of outcomes play fundamentally distinct
behavioral roles. To this end, we varied the magnitude of a reward or a penalty experienced
following a choice using monetary tokens. The outcome of each trial was independent of
the outcome of the previous trial, which enabled us to isolate and study the effect on
behavior of each outcome magnitude in single trials. We found that a reward led to a rep-
etition of the previous choice, whereas a penalty led to an avoidance of the previous choice.
Surprisingly, the effects of the reward magnitude and the penalty magnitude revealed a
pronounced asymmetry. The choice repetition effect of a reward scaled with the magnitude
of the reward. In a marked contrast, the avoidance effect of a penalty was flat, not influ-
enced by the magnitude of the penalty. These effects were mechanistically described using
a reinforcement learning model after the model was updated to account for the penalty-
based asymmetry. The asymmetry in the effects of the reward magnitude and the punish-
ment magnitude was so striking that it is difficult to conceive that one factor is just a
weighted or transformed form of the other factor. Instead, the data suggest that rewards
and penalties are fundamentally distinct factors in governing behavior.

! 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reinforcement and punishment constitute Nature’s
arsenal in guiding behavior (Thorndike, 1898, 1911;
Skinner, 1963; Tversky & Kahneman, 1986; Davison,
1991; Gray, Stafford, & Tallman, 1991; Ehrlich, 1996;
Hackenberg, 2009). It is well established that reinforcers
and punishers both critically influence behavior, but it
has been unclear whether these factors exert symmetric

or qualitatively distinct behavioral effects (Skinner, 1953;
Farley & Fantino, 1978; Gray et al., 1991; Dinsmoor,
1998; Lerman & Vorndran, 2002; Critchfield, Paletz,
MacAleese, & Newland, 2003; Lie & Alsop, 2007). One-fac-
tor theories have proposed a symmetric law of effect
(Thorndike, 1927). In this view, reinforcement increases
behavior frequency, punishment decreases behavioral fre-
quency, and the magnitudes of these effects are equal, just
of opposite signs (Thorndike, 1911; Sidman, 1962;
Herrnstein & Hineline, 1966; Schuster & Rachlin, 1968;
Rachlin & Herrnstein, 1969; Villiers, 1980). In contrast,
two-factor theories view reinforcement and punishment
as qualitatively distinct influences on operant behavior
(Mowrer, 1947; Dinsmoor, 1954; Epstein, 1985; Yechiam
& Hochman, 2013).
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This debate remains, for the most part, unresolved
(Hineline, 1984; Gray et al., 1991; Dinsmoor, 1998, 2001;
Critchfield et al., 2003; Lie & Alsop, 2007). This is mainly
due to two reasons. First, it is difficult to compare qual-
itatively different factors (e.g., food versus electric shock)
on a common scale (Schuster & Rachlin, 1968; Farley &
Fantino, 1978; Villiers, 1980; Fiorillo, 2013). A solution to
this problem is to work with reinforcers and punishers that
are of the same kind—using tokens that represent gains
and losses (Hackenberg, 2009). Second, previous studies
targeting this question have employed relatively complex
paradigms (Bradshaw, Szabadi, & Bevan, 1979; Gray
et al., 1991; Critchfield et al., 2003; Rasmussen &
Newland, 2008). The complex paradigms make it difficult
to readily investigate the effect of a reward or a punish-
ment on a behavioral response.

We addressed this question in a simple choice paradigm
in which we varied the magnitude of a reward or a penalty
experienced following each choice. This allowed us to mea-
sure subjects’ tendency to repeat their previous choice as a
function of the magnitude of the experienced reward or
penalty. In this simple paradigm, one-factor theories pre-
dict that the reward and penalty magnitudes will lead to
qualitatively similar, just oppositely signed tendencies to
repeat the previous choice. In contrast, two-factor theories
predict that the choice repetition tendencies will be qual-
itatively distinct for the two factors. The data indeed
revealed a striking asymmetry in the effects of the reward
and penalty magnitudes on the choice behavior. The asym-
metry was so profound that it suggests that the two behav-
ioral factors are of distinct natures.

2. Materials and methods

2.1. Subjects

Eighty-eight Washington University undergraduate
students participated in this study. The subjects performed
an Auditory task or a Visual task. The Auditory task was
performed by 54 students (37 females, 17 males), aged
18–21 (mean 19.2). The Visual task was performed by a
distinct set of 34 students (24 females, 10 males), aged
18–23 (mean 19.4). All subjects were healthy, had normal
hearing capacity, and gave an informed consent. Subjects
participated for class credit.

2.2. Auditory task

Subjects sat in a comfortable chair 70 cm in front of a
flat-screen monitor. Subjects wore headphones (MDR-
V600, Sony), which presented a stereo auditory stimulus
(see Auditory stimulus). The subjects’ hands were comfort-
ably positioned at a computer keyboard, with the left index
finger placed over the left Command key and with their
right index finger placed over the right Command key.
The control of the experimental design was accomplished
using a custom program written in Matlab (The
Mathworks, Inc., Natick, MA, RRID:nlx_153890).

Each trial started with the presentation of a red fixation
cross, 2" in size. Subjects were instructed to fixate at the

center of the cross. At the same time, subjects were pre-
sented with a stereo auditory stimulus (click sounds, see
Auditory stimulus), 1.0 s in duration (Fig. 1A). After the
stimulus has been presented, the fixation cross shrank to
1" and changed its color to green. This event cued the sub-
jects to make a movement (choice). Subjects performed 2
blocks of 300 trials each, with a brief period in between. In
the first block of 300 trials, subjects were instructed to press
the left Command key with their left index finger if they
heard more clicks in the left ear and to press the right
Command key with their right index finger if they heard
more clicks in the right ear. In the second block of 300 trials,
this instructed contingency was reversed. We found similar
results in both blocks and therefore pooled the data over the
two blocks. In 20% of trials, we randomly interleaved cases in
which no auditory stimulus was present. When no sound
was heard, subjects were instructed to choose either key
(i.e., to either press the left key with the left index finger
or the right key with the right index finger). The purpose
of these trials was to investigate the effect of outcome on
choice when no perceptual stimulus is present (Fig. 3B).

If subjects responded prior to the green cue or if they
failed to indicate a response within 1200 ms after the
cue, the trial was considered invalid, and was aborted
and excluded from the analyses. The type of error was indi-
cated to the subjects in red, large-font text (‘TOO EARLY’,
‘TOO LATE’). The proportion of valid choices over the sub-
jects was 96.0% ! 1.0 (mean ! s.d.). A response was imme-
diately followed by a display of the outcome. Specifically, a
correct response was followed by the display of a green
string that was randomly drawn from the set
fþ5c;þ10c;þ15c;þ20c;þ25cg. An incorrect response was
followed by the display of a red string randomly drawn
from the set f#5c;#10c;#15c;#20c;#25cg. These strings
were chosen to represent ‘‘cents’’; the subjects received
no instruction in this regard. The outcome was displayed
for 0.5 s. The next trial started immediately following the
offset of the outcome.

2.3. Auditory stimulus

The auditory stimulus was equivalent to that used pre-
viously (Kubanek, Snyder, Brunton, Brody, & Schalk, 2013).
Briefly, each ear was presented with a train of brief
(0.2 ms) clicks sounds drawn from a homogeneous
Poisson process. Each train lasted 1.0 s. The stereo stimulus
was composed such that the sum of clicks presented to the
left ear (Cl) plus the sum of clicks presented to the right
ear (Cr) summed to a fixed number Cl þ Cr

¼ X;X 2 f25;32;39;46g. Since Cr and Cl were drawn ran-
domly in each trial (and randomly in each subject), the
polarity (leftward, rightward evidence) of the stimulus
was random in each trial. The value of X was drawn ran-
domly on each trial. The X randomization was imposed
to ensure that subject had to pay attention to the click
sounds in both ears.

2.4. Visual task

The Visual task was analogous to the Auditory task. We
therefore only specify the differences. In the Visual task,
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instead of auditory clicks presented to the right and the left
ears, subjects were presented with two blue targets (2
visual degrees in size) in the left part and the right part
of the screen. The left (right) target were flickering at a rate
corresponding to Cl (Cr). These stimuli were constructed in
the same way as the auditory clicks, with the exception
that they were constraint by the screen refresh rate
(80 Hz). In particular, no target could flicker more than
40 times per second. If such stimulus was generated, it
was replaced by a newly generated stimulus. The stimuli
were synchronized with the screen refresh rate; each tar-
get flicker lasted one frame (12.5 ms; 1/80 s), and was fol-
lowed by at least one frame in which the target was black
(invisible). The proportion of valid choices over the sub-
jects was 98.1% ! 1.4 (mean ! s.d.).

2.5. Online adaptive procedure

We set the difficulty of the perceptual tasks such that
subjects were correct in 60% of cases. We achieved this
using an adaptive staircase procedure (Kubanek et al.,
2013). In particular, prior to the start of each trial, we ran-
domly drew a number E from a uniform distribution over
the interval ð#1;þ1Þ. The program then randomly selected
one of 10 pre-generated auditory stimuli with such Cr and
Cl that—according to the current model—most closely

corresponded to the generated E. Using the same behav-
ioral model as previously (Kubanek et al., 2013):

E ¼ 2

1þ exp #b Cr#Cl
CrþCl

! "! "# 1; ð1Þ

it follows that

Cr ¼
1
b

ln
E

1# E

# $
X

where X ¼ Cr þ Cl and thus Cl ¼ X# Cr .
To keep each subject at 60% of correct responses, the

program adapted the value of b in Eq. (1), (initial value
b ¼ 8) to each subject’s performance over the last 20 trials
according to the following update rule:

bnew ¼ bold1:2ðA#60Þ=10

where A is the accuracy, in %, over the past 20 trials.

3. Results

3.1. Task

Fifty-four human subjects performed a choice task in
which they were instructed to make a response based on
the polarity of brief trains of click sounds simultaneously
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Fig. 1. Task and stimulus-based behavior. (A) Subjects listened to a binaurally presented auditory stimulus that comprised a 1.0 s train of Poisson-
distributed click sounds (Methods). Following the stimulus presentation, subjects pressed either the left Command key with their left index finger or the
right Command key with their right index finger, if they heard more clicks in the right ear or more clicks in the left ear. A response was followed by an
outcome (see text for details). (B) Mean ! s.e.m. proportion of rightward choices as a function of the difference in the number of clicks in the right and the
left ear. The curve represents logistic fit to the 10 data points. The s.e.m. are larger for larger click differences because there were relatively few cases in
which subjects were presented with large click differences (i.e., easy stimuli). (C) Mean ! s.e.m. RT as a function of the absolute value of the difference in the
number of clicks in the right and the left ear. To control for differences in mean RT over the subjects (445 ! 123 ms, mean ! s.d.), the mean RT was
subtracted from each RT value in each subject.
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presented to both ears. The polarity was drawn randomly
on each trial. If subjects heard more click sounds in the
right ear, they pressed the right Command key with the
right index finger. If they heard more click sounds in
the left ear, they pressed the left Command key with the
left index finger (Fig. 3A). Critically, a response was
followed by an outcome displayed on the screen. If the
response was correct, the screen displayed a string ran-
domly drawn from the set fþ5c;þ10c;þ15c;þ20c;þ25cg.
If the response was incorrect, a string randomly drawn
from the set f#5c;#10c;#15c;#20c;#25cg was displayed.
The presence of outcomes was mentioned neither during
the recruitment nor when instructing the subjects.
Subjects participated for fixed class credit.

While subjects performed the task, an algorithm moni-
tored each subject’s performance and adaptively adjusted
task difficulty so that subjects were correct in 60% of cases.
Indeed, subjects made a correct choice at the desired ratio,
in 61:1! 4:8% (mean ! s.d., n ¼ 54) of cases. We set the
ratio to this value for two reasons. First, a task with a
60% correct ratio generates a balanced proportion of
rewards (60%) and penalties (40%). Second, a challenging
task (60% correct) may encourage subjects’ attention to
the auditory stimulus.

3.2. Stimulus-based behavior

Subjects’ responses followed the given instruction
(Fig. 1B). When subjects heard substantially more (e.g.,
10 more) clicks in one ear than the other, they predomi-
nantly pressed the appropriate button. When the click
magnitudes were similar, subjects produced both
responses with similar frequency (Fig. 1B). To quantify
the subjects’ sensitivity to the click magnitude difference,
we fitted the data using logistic regression, in the same
way as shown in Fig. 1B, to choices of each subject. We
then measured the weight assigned to the click difference
in this regression. The weight indeed significantly differed
from zero over the subjects (p < 0:0001; t53 ¼ 16:41, two-
sided t-test). Thus, the click difference was a significant
factor in guiding the subjects’ responses.

The amount of information in the stimulus may influ-
ence the time it takes to produce a response, the reaction
time (RT). We indeed found that the more information in
the stimulus (the higher the difference in the number of
the clicks), the faster the subjects responded (Fig. 1C).
We quantified this relationship by fitting a line to this
relationship in each subject, and measured the slope of
the line. The mean modulation of RT was #34.6 ms per
the click range shown in Fig. 1C, and this slope significantly
differed from zero (p ¼ 0:00012; t53 ¼ #4:14, two-sided t-
test).

3.3. Effects of reinforcement and punishment

Crucially, we investigated how the outcome of a choice,
a reward (also referred to as ‘‘gain’’) or a penalty (also
referred to as ‘‘loss’’), influenced the subjects’ choice in
the subsequent trial. Notably, in this task, the polarity of
a stimulus (rightward, leftward) on a given trial was
independent of the stimulus polarity on the previous trial.

Therefore, the outcome of the previous trial should have no
bearing on the choice on the current trial.

We nevertheless found that a reward or a penalty
affected choice (Fig. 2). When a choice was followed by a
reward, subjects were biased to repeat that choice (right
bar in Fig. 2). This repetition frequency was higher than
the 50% expected if there was no influence of the outcome
on subsequent choice. In particular, subjects repeated their
previous behavior, following a reward, in 53:0% of cases,
and this proportion significantly differed from the 50% over
the subjects (p ¼ 0:015; t53 ¼ 2:53, two-sided t-test). In
contrast to rewards, penalties exerted an opposite effect
on the choice behavior (left bar in Fig. 2). Specifically,
penalties led to an avoidance of the previous choice.
Following a penalty, subjects repeated their past choice
only in 42:7% of trials (i.e., avoided that choice in 57:3%
of trials), and this frequency was significantly different
from the 50% expected if there was no influence of the out-
come on choice (p < 0:0001; t53 ¼ #6:63, two-sided t-test).

These findings reproduce the findings of previous stud-
ies that rewards generally increase behavioral frequency
and penalties generally decrease behavioral frequency
(Skinner, 1953; Lerman & Vorndran, 2002). Interestingly,
however, in those studies, there were statistical relation-
ships between outcomes and behaviors, i.e., an outcome
of a behavior was in some way related to and so pre-
dictable from the outcomes of previous behaviors. In our
task, in which a behavior was based on a perceptual
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Fig. 2. The effect of an outcome on subsequent choice. Mean ! s.e.m.
proportion of trials in which subjects repeated their previous choice given
the outcome of that previous choice (a gain or a loss). If there was no
effect of the outcome, subjects would be expected to repeat each choice in
50% of cases because the polarity of the stimulus was random in each trial
(horizontal line). Instead, following a gain, subjects showed a significant
tendency to repeat their previous choice; following a loss, subjects tended
to avoid the same choice. The p values give the significance of the test that
a mean significantly differs from 50% (two-sided t-test, n ¼ 54).
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stimulus, an outcome was independent of previous out-
comes, and so previous outcomes should not influence cur-
rent behavior. Yet, a law of effect based on previous
experience (Thorndike, 1927) was still at work (Fig. 2).

The absolute mean deviation from 50% for losses (7:3%)
was 2.43 times larger than the absolute mean deviation
from 50% for gains (3:0%), and the difference was signifi-
cant across the subjects (p ¼ 0:024; t53 ¼ 2:32, paired
two-sided t-test). This effect aligns with the findings that
a punisher subtracts more value than a reinforcer adds
(Epstein, 1985; Rasmussen & Newland, 2008). However,
this finding should be considered with care. The polarity
of a stimulus was random on each trial and so there was
a 50% chance that a subject would repeat a previous choice.
Nonetheless, there may be cognitive factors that may influ-
ence the rate of the behavioral inertia (i.e., the repetition
rate). To investigate whether the default repetition rate is
close to 50%, we tested how choices are influenced by out-
comes that occur in the more distant past—two trials prior
to the current choice. We found that choices were not sig-
nificantly influenced by outcomes occurring in this more
distant past and that the choice repetition frequencies
were indistinguishable from 50% (Fig. 3A; gains: mean
49:2%, p ¼ 0:42; t53 ¼ #0:82; losses: mean 49:6%,
p ¼ 0:73; t53 ¼ #0:34). Thus, the default repetition rate in
this task was indeed very close to 50%.

The analysis of Fig. 3A provides an important further
insight into the temporal dynamics of the effects. The
effect of the outcome on choice is rapid—it demonstrates
itself immediately during the choice following an outcome
(Fig. 2), and transient—it vanishes after that choice is made
(Fig. 3A). Transient effects of this sort have been observed
for reinforcers previously (Davison & Baum, 2000). In this
regard, our data suggest that punishers may follow simi-
larly local effects.

An outstanding question is whether the effect of the
outcome O (a reward or a penalty) is due to an association
with the stimulus S (an O–S relationship), or due to an
association with the response R (an O–R relationship).
For instance, if the left response is followed by a reward,
subjects may allocate their attention to the left on the next
trial and so amplify the representation of the leftward
stimulus. This may lead to an increased rate of repetition
of the left response. Alternatively, an outcome may be
directly tied to the response that has led to the outcome,
a relationship that bypasses the sensory processing. To dis-
tinguish between these possibilities, we incorporated into
the experiment 20% of trials during which the auditory
stimulus was absent. In these trials, subjects were
instructed to choose freely either alternative. We found
that a gain or a loss impacted subsequent choice even
when prior to that choice there was no stimulus (Fig. 3B).
The effects were similar to those observed when the stimu-
lus was present—subjects tended to repeat the same choice
following a gain (mean repetition frequency 56:0%,
p ¼ 0:012; t53 ¼ 2:61, two-sided t-test), and tended to
avoid the same choice following a loss (mean repetition
frequency 43:1%, p ¼ 0:016; t53 ¼ #2:50). Notably, the sig-
nificance of the effect of losses is lower than the signifi-
cance of the same effect when the stimulus is present
(Fig. 2). This is likely because the current analysis is based
only on 1/5th of the data, and so the corresponding results
are statistically less firm, which is apparent in the rela-
tively large error bars in Fig. 3B. Nonetheless, since the
effects are preserved in the trials in which there is no
stimulus, the effect of the outcome is difficult to be
explained though an O–S association. Thus, this analysis
suggests that the response is directly paired (in either the
positive or the negative sense) with an outcome, i.e., the
effect involves an O–R link.
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3.4. Effects of the reward and penalty magnitudes

The main goal of this study was to investigate how the
subjects’ choices were affected by the magnitude of a
reward or a penalty. The behavioral effects of a particular
magnitude of a reward or a penalty are shown1 in Fig. 4.
The figure reveals that for gains (blue), the effect scales as
a strictly monotonic function of the gain magnitude: the
higher the gain, the stronger the tendency to repeat the pre-
vious choice. We fitted this relationship, for each subject,
with a quadratic curve, to account for the apparent sat-
uration of the effect with larger gains (Kahneman &
Tversky, 1979). However, the quadratic term did not reach
significance over the subjects (p ¼ 0:15; t53 ¼ #1:45, two-
sided t-test). We therefore fitted the relationship with a line.
The mean linear modulation of the choice repetition per-
centage by the gain magnitude over the subjects was
0:27% per outcome cent, and this modulation was highly sig-
nificant (p < 0:0001; t53 ¼ 4:33, two-sided t-test).

In a striking contrast, the choice behavior was not
modulated by the magnitude of a penalty (red). Losses eli-
cited a universal avoidance of the choice that was followed
by a loss, regardless of how small a loss was. Fitting a line
to these data in the same way as for gains, we found that
the slope of the line was small (mean modulation
#0:038% per outcome cent) and statistically indistinguish-
able from zero (p ¼ 0:72; t53 ¼ #0:36). Furthermore, the
variance in the slopes over the individual subjects was lar-
ger for losses (variance in slope 0:58) compared to gains
(variance in slope 0:22), and the difference was significant
(p ¼ 0:00055; F53;53 ¼ 0:38, F-test for equal variance). Thus,
the magnitude of a gain had a consistently strong effect on
the choice behavior, whereas the magnitude of a loss had
no effect. These data demonstrate a prominent asymmetry
in the law of effect, and suggest that rewards and punish-
ments act as distinct factors in directing behavior.

3.5. Mechanistic models

We investigated how the effects of rewards and penal-
ties on choice could be described at the molecular level. To
this end, we tested several mechanistic models. The mod-
els were fitted to the same outcomes as those experienced
by each subject. Given these outcomes, the models made
choices, on each trial, with choice repetition frequency
Prepeat as indicated by the specific equations below. The
results, by definition, do not depend on whether we
directly use a model’s output Prepeat as the estimate of the
choice repetition frequency, or whether we first draw the
individual binary (left, right) choices with the probability
Prepeat and from these choices retrospectively estimate the
choice repetition frequency. The models’ parameters were
fitted such as to minimize the mean squared error,
between the model and the behavior of each subject, in
the mean choice repetition frequency over each value of
the outcome (n ¼ 10 data points for each subject). The
search for the minimum was performed by the Matlab
function fminsearch.

3.5.1. Reinforcement learning model
We first tested whether the subject’s behavior could be

reproduced using a Reinforcement learning model. The
Reinforcement learning model is a mechanistic model that
has been successfully applied to explain choice behavior in
a variety of reward-based tasks (Sutton & Barto, 1998;
Dorris & Glimcher, 2004; Seo, Barraclough, & Lee, 2009;
Niv, 2009). In this model, each choice is associated with a
value Q. When a choice is made and an according outcome
O is registered, a new value of the choice Qnew is computed
according to the rule:

Q new ¼ Qold þ aðO# Q oldÞ ð2Þ

Here the term aðO# QoldÞ embodies an instrumental
version of the Rescorla–Wagner learning rule initially used
to describe the dynamics of the strength of associations
during classical conditioning (Rescorla & Wagner, 1972).
This learning rule states that the value is updated when
the predicted, old value Q old differs from the actual, new
outcome O. The learning rate a dictates how much weight
the outcome O has on this updating. This constant also
governs the memory of the model—with smaller values
of a (say a ¼ 0:1), the value of choice is updated only mini-
mally and thus its old value is largely retained. On the
other hand, when a ¼ 1:0, the old value is entirely replaced
by the current outcome O.

Given the values associated with each choice at each
time, an action in this model is on each trial selected with
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Fig. 4. Effects of the reward magnitude and the penalty magnitude on
subsequent choice. Mean ! s.e.m. proportion of trials in which subjects
repeated their previous choice given a particular value of the outcome of
that choice. The p values give the significance of the test that the lines
fitted to the data of the individual subjects have slopes different from zero
(two-sided t-test, n ¼ 54).

1 For interpretation of color in ‘Figs. 4–6, and 9’, the reader is referred to
the web version of this article.
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a probability that is a function of these values. In a two-
choice (left, right) setting, an action is often (Seo et al.,
2009) selected with the probability given by the
Boltzmann distribution over the difference in the two
action values:

Pleft ¼ f ðQleft # Q rightÞ ¼
1

1þ e#bðQleft#QrightÞ
; ð3Þ

where b is the inverse temperature parameter. This
parameter controls how sensitive a subject’s choice-mak-
ing is to the values Q (and thereby (Eq. (2)) to the outcomes
O).

The model then computes the choice repetition fre-
quency Prepeat for each trial as

Prepeat ¼
Pleft for a left choice on the previous trial
1# Pleft for a right choice on the previous trial:

%

ð4Þ

We first simplified this model by incorporating the find-
ing that choices are influenced by the most recent out-
comes, not by outcomes occurring in the more distant
past (Fig. 3A). We therefore set a ¼ 1 to model this rapid
form of conditioning. The resulting Reinforcement learning
model has just one free parameter, b.

We presented this Reinforcement learning model with
the same outcomes as those experienced by each subject.
We then asked whether the model can reproduce the behav-
ior of each subject, after fitting its parameter b. The fit
resulted in b ¼ 0:013! 0:0016 (mean ! s.e.m.). The data
and the model’s predictions, averaged over the individual
subjects, are shown in Fig. 5A. The overlap of the dark and
light blue lines indicates that this model provides a good
account of the subjects’ behavior following gains (model
versus data, difference in means: p ¼ 0:99; t53 ¼ #0:012;

difference in slopes: p ¼ 0:94; t53 ¼ #0:082; paired two-
sided t-tests). However, the discrepancy between the dark
and light red lines indicates that the model fails to capture
the effects of losses. For losses (red), there is a significant dif-
ference in means (p ¼ 0:030; t53 ¼ #2:23). This finding of a
significant difference in the mean levels for losses, between
the model and the subjects’ behavior, is important because it
confirms that the asymmetry in gains and losses (Fig. 2) can-
not be explained due to task-related factors such as the
somewhat imbalanced proportion of gains and losses (60%
versus 40%; see next paragraph for details). The model
would capture this imbalance because it experienced the
same outcomes as the subjects. Furthermore, the figure
reveals that the model has a particular difficulty with cap-
turing the lack of modulation due to the loss magnitude,
which is reflected in a particularly significant difference in
the slopes (p ¼ 0:0066; t53 ¼ #2:83).

Notably, the predictions of this model (Fig. 5A) are not
symmetric about the 50% axis. This is because subjects gain
more often than they lose (proportion of gains, 61:1%), and
because the Reinforcement learning model keeps track of
the Q values of both choices (Eq. (3)). Due to the gain–loss
asymmetry, receiving a gain (loss) in the relatively likely
situation in which both Q values in Eq. (3) already reflect
a gain entails a relatively small (large) effect on behavior.
Indeed, when the proportions of gains and losses are made
equal (simulation, data not shown), or when the same data
are submitted to a simpler model that does not keep track
of the Q values of both options (Fig. 6A), this effect
vanishes.

We tested whether the uniform effect of the loss magni-
tude could be accounted for by a combination of the two
parameters of the Reinforcement learning model, b and a
(Fig. 5B). The figure shows that both parameters modulate
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Fig. 5. A mechanistic account of the choice behavior using a Reinforcement learning model. (A) Behavior of the subjects and of a Reinforcement learning
model. The figure shows the mean choice repetition frequency as a function of the outcome magnitude, for the subjects (dark solid) and the model (light
dashed). The model was fitted separately to the data of individual subjects, and the average is shown. (B) Effects of varying parameters in the Reinforcement
learning model. The individual data points and lines represent the individual combinations of parameter values. The parameter values are given next to
each line on the right. (C) Same as in A but for a Reinforcement learning model in which the outcome is modeled as a constant for all trials that follow a loss
(see text for details).
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the slope of the relationship between the choice repetition
frequency and the outcome magnitude (Fig. 5B). Thus, the
parameters dictate the sensitivity of the choice behavior to
the outcome magnitude. The figure demonstrates that nei-
ther parameter nor their combination can account for the
effect of losses.

3.5.2. Updated reinforcement learning model
To capture this effect, the Reinforcement learning

model must be modified. In particular, we substituted
the outcome O in Eq. (2) by k,

Q new ¼ Qold þ aðk# Q oldÞ;

such that

k ¼
O for a reward
kpenalty for a penalty:

%
ð5Þ

The new parameter kpenalty represents the outcome that,
according to the model, a subject experiences when facing
a penalty. The fit resulted in b ¼ 0:012! 0:0018 and
kpenalty ¼ #28:9! 4:6. With this modification, the
Reinforcement learning model faithfully reproduced the
subjects’ behavior (Fig. 5C). There are now no significant
differences, between the data and the model, in either
the mean levels or the slopes, for either gains or losses
(all p > 0:28).

3.5.3. Satisficing model
The Reinforcement learning model keeps track of the

values of both choices. In particular, for a ¼ 1, choices are
made with a probability that is a function of the difference
of the last outcome experienced following a left and a right
choice:

Pleft ¼ f ðOleft # OrightÞ ¼
1

1þ e#bðOleft#OrightÞ
: ð6Þ

However, subjects may not keep track of the outcomes
for both choices. Instead, they may follow a satisficing or a
melioration-related strategy (Simon, 1959; Wierzbicki,
1982; Herrnstein, 2000). In particular, subjects may tend
to repeat a choice following a gain, tend to avoid a choice fol-
lowing a loss, and entirely disregard the value of the uncho-
sen alternative. This way, the outcome assigned to the
unchosen alternative is equal to 0, and Eq. (6) thereby sim-
plifies to

Prepeat ¼ f ðOÞ ¼ 1
1þ e#bO : ð7Þ

The behavior of this simple model (b ¼ 0:012! 0:0015)
is shown in Fig. 6A. The figure reveals that also this model
has difficulties to account for the effects of losses (red). For
losses, there is a significant difference, between the model
and the data, in the mean values (p ¼ 0:0038; t53 ¼ #3:03;
paired two-sided t-test). Again, this finding is important
because it further confirms that the finding of a stronger
effect of losses than gains (Fig. 2) is not due to an asymme-
try in the frequency of obtaining a loss or a gain (see the
note on this above). Furthermore, for losses, there is a sig-
nificant difference in the slopes (p ¼ 0:0025; t53 ¼ #3:17;
paired two-sided t-test). Variability in the parameter b
leads to variability in the slope of the effect (Fig. 6B), but
this variability does not provide the means to account for
the effect of losses.

3.5.4. Updated satisficing model
Similarly as with the Reinforcement learning model, to

capture the effect of losses, we extended the model (Eq.
(7)) by substituting the outcome O with k:

Prepeat ¼ f ðkÞ ¼ 1
1þ e#bk

;

where
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Fig. 6. A mechanistic account of the choice behavior using a satisficing model. The behavior of a simple satisficing model in this task (see text for details).
Same format as in Fig. 5.
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k ¼
O for a reward
kpenalty for a penalty:

%
ð8Þ

This updated model (b ¼ 0:014! 0:0022; kpenalty ¼
#64:0! 9:0) now accounts for the general trends in the
data (Fig. 6C). However, the updated satisficing model does
not provide as accurate a fit to the data of the individual
subjects as does the updated Reinforcement learning
model. In particular, the updated satisficing model shows
significant differences, between the data and the model,
in the mean effects (gains: p ¼ 0:0021; t53 ¼ #3:23; losses:
p ¼ 0:00074; t53 ¼ #3:58; paired two-sided t-tests). This
structurally simple model therefore does not capture the
subjects’ behavior in this task as faithfully as the struc-
turally richer Reinforcement learning model, despite the
fact that both models have 2 free parameters.

3.5.5. Win-stay lose-shift model
In a Win-Stay Lose-Shift model (Worthy, Hawthorne, &

Otto, 2013), a subject repeats a choice following a reward,
and shifts (switches) a choice following a penalty. The
probability with which the repetition and the shift occur
are determined by two free parameters, Preward and Ppenalty.
The fit resulted in Preward ¼ 0:53! 0:012 and
Ppenalty ¼ 0:43! 0:010. The behavior of this model is shown
in Fig. 7A. As apparent from the figure, the two free
parameters allow the model to faithfully capture the mean
levels; there were no significant differences between the
model and the data in the mean levels for either gains or
losses ðp > 0:27Þ. However, because this model is insensi-
tive to the magnitude of an outcome, it fails to account
for the positive slope for gains, exhibiting a significant dif-
ference between the model and the data in this respect
ðp < 0:001; t53 ¼ #4:33Þ.

3.5.6. Prospect utility model
The Prospect Utility model (Ahn, Busemeyer,

Wagenmakers, & Stout, 2008) is similar to the Updated
Reinforcement learning model. The difference is that in
the Prospect Utility model the outcomes O are replaced
by ‘‘prospects’’ P:

Pleft ¼ f ðPleft #PrightÞ ¼
1

1þ e#bðPleft#Pright Þ
; ð9Þ

where the prospects are computed as

P ¼
Oa for a reward
#kjOja for a penalty:

(
ð10Þ

The parameter a controls the sensitivity to an outcome
O. The parameter k allows for specific weighting of
losses. This three-parameter model (a ¼ 0:97! 0:007;
b ¼ 0:032! 0:0039; k ¼ 0:75! 0:126) accounted for the
data reasonably well (Fig. 7B), but showed a significant
difference between the actual and modeled slopes for
losses (p ¼ 0:032; t53 ¼ 2:20).

3.5.7. Random responder model
We also considered a model which makes choices ran-

domly regardless of the outcome of the previous trial.
This model, Random Responder, has no free parameters.
Considering this model was important in assessing the
floor performance. The behavior of this model is shown
in Fig. 7C. As expected, this model does not account for
the data, which is demonstrated in significant deviations
between the model and the data in the mean levels (gains:
p ¼ 0:0077; t53 ¼ #2:77; losses: p < 0:0001; t53 ¼ 6:36) and
in the slope for gains (p < 0:001; t53 ¼ #3:81).
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Fig. 7. The behavior of Win-Stay Lose-Shift, Prospect Utility, and Random Responder models. Model fits for the (A) Win-Stay Lose-Shift (B) Prospect Utility
and (C) Random Responder models. See text for description of the individual models. Same format as in Fig. 5.
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3.5.8. Summary of the models’ performance
We compared the performance of the models consid-

ered in this study in Table 1. The performance is assessed
using two metrics. The first metric is the proportion of
variance explained (R2). Albeit easy to interpret, this metric
does not take into account model complexity. To take the
model complexity into account, we used the Bayesian
information criterion (BIC; Schwarz, 1978). The BIC evalu-
ates the likelihood of a model candidate to be suitable to
account for data while penalizing the number of free
parameters to be estimated. The penalty for the number
of parameters bypasses the necessity to match the number
of parameters in each model in order for a comparison to
be fair. A lower BIC value indicates a better model.

The table confirms the impression of Fig. 5C that the
Updated Reinforcement learning (RL) model fits the data
best, exhibiting the lowest BIC value and explaining
98.7% of the variance in the 10 data points. According to
the BIC, the second best fitting model was the Prospect
Utility model, which explained 96.3% of the variance. The
difference in the BIC values between the Updated
Reinforcement learning model and the Prospect Utility
model amounts to #10:1. This BIC difference is substantial
and corresponds to the probability ratio of 156.0: 1 (Eq.
(22) in Raftery (1995)) that the Updated Reinforcement
learning model is the better fitting model.

3.6. Robustness of the effects across tasks

Finally, we tested the robustness of the reported dis-
tinction between the effects of reinforcement and punish-
ment. To do so, we collected data in additional 34 subjects
in a visual-flash task (see Methods). The task was analo-
gous to the auditory-click task, with the exception that
instead of auditory clicks in the left and right ears, subjects
were presented with visual targets flashing in the left and
right part of the screen. As in the auditory task, task diffi-
culty was adaptively adjusted so that subjects were correct
in 60% of cases. Indeed, subjects made a correct choice at
the desired ratio, in 60:5! 2:3% (mean ! s.d., n ¼ 34) of
cases.

This task confirmed the marked distinction in the
effects of rewards and penalties (Fig. 8B). As in the auditory
task (Fig. 8A), the tendency to repeat previous choice fol-
lowing a gain was strongly governed by the gain magni-
tude. The mean linear modulation of the choice
repetition percentage by the gain magnitude over the sub-
jects was 0:26% per outcome cent, and this modulation is
highly significant (p < 0:0001; t33 ¼ 4:45, two-sided t-test).

In contrast, the tendency to avoid previous choice follow-
ing a loss was flat (0:01% per outcome cent, p ¼ 0:91).
The mean repetition frequency for gains was 55.3%, for
losses 42.5%. These numbers deviated from 50% by 5.3%
and 7.5% for gains and losses, respectively. This difference
in the means showed a trend to significance (p ¼ 0:087;
t33 ¼ #1:76).

Since the two tasks exhibit very similar effects, we con-
catenated the data over both tasks and present the result in
Fig. 9. The mean linear modulation of the choice repetition
frequency by the gain magnitude over the subjects was
0:27% per outcome cent, and this modulation is highly sig-
nificant (p < 0:0001; t87 ¼ 6:00). No such modulation is
observed for losses (#0:02%; n.s.). The mean choice rep-
etition frequency for gains (losses) was 53.9% (42.7%),
and the residuals from 50%, i.e., 3.9% and 7.3% were signifi-
cantly different (p < 0:0001; t87 ¼ #4:29).

4. Discussion

Whether Thorndike’s law of effect is symmetric or
asymmetric in regard to reinforcement and punishment
has been an unresolved question (Skinner, 1953; Farley &
Fantino, 1978; Gray et al., 1991; Dinsmoor, 1998; Lerman
& Vorndran, 2002; Critchfield et al., 2003; Lie & Alsop,
2007). We addressed this question in simple choice tasks
that allowed us to study the behavioral effects of the mag-
nitudes of reinforcement and punishment in single trials.
We found overwhelmingly asymmetric effects of reinforce-
ment and punishment on the choice behavior (Fig. 9).

Given the well established behavioral effects of rewards
and penalties (Fig. 2), one would expect that the larger a
reward, the higher the tendency to repeat a choice, and
the larger a loss, the higher the avoidance rate. We found
that this indeed is the case for rewards (Fig. 9, blue), but
strikingly, there is no modulation of the effect by the mag-
nitude of a penalty (red). A loss drove a uniform avoidance
of the choice that led to the loss.

Asymmetries in the effects of rewards and penalties
have been observed across multiple fields, including the
cognitive-decision literature (Rachlin, Logue, Gibbon, &
Frankel, 1986; Rachlin, 1989) and behavioral economics
(Kahneman & Tversky, 1979). In these literatures, the sub-
jective value, or a prospect of a loss weighs more heavily
upon a choice than the prospect of a gain. Specifically,
the subjective value function is often found to be concave
for gains and convex and relatively steeper for losses
(Kahneman & Tversky, 1979). In these literatures, the esti-
mated subjective values of rewards and penalties exhibit

Table 1
Comparison of model fits. The table lists the proportion of variance explained (R2) and the Bayesian information criterion (BIC) for the tested models. The
models were fitted to the individual data points in Fig. 4 by minimizing the least square error. In addition to the absolute BIC value, the BIC is also provided
relative to the BIC for the Random model in which choices are drawn randomly. A lower BIC value indicates a more suitable model. RL: Reinforcement learning.
WSLS: Win-Stay Lose-Shift. The Updated Reinforcement learning model (Fig. 5) is found to be the most suitable model by the BIC and accounts for most of the
variance in the data.

Random WSLS RL Updated RL Prospect utility Satisficing Updated satisficing

R2 0.03 0.92 0.89 0.99 0.96 0.88 0.96
BIC #57.4 #78.9 #73.7 #92.3 #82.2 #69.7 #79.8
BIC (re Random) 0 #21.5 #16.3 #34.9 #24.8 #12.3 #22.4
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different relationships to their respective objective values.
However, these relationships do not differ radically
between rewards and penalties; the differences are a mat-
ter of relatively simple weighting or strictly monotonic
transformations (Kahneman & Tversky, 1979). Our study,
in contrast, revealed a profoundly distinct effect of rewards
and penalties (Fig. 9). The plot cannot be accurately fitted
with a strictly monotonic function; the data appear to
involve two distinct functions—a constant function (red)
and a linear function with positive slope (blue). The data
therefore suggest that the two factors—rewards and penal-
ties—involve two distinct cognitive processes.

Notably, any attempt to relate our findings to the find-
ings of the above literatures must be taken with care. In
particular, it is unclear whether the value functions in
these literatures capture similar effects as the choice rep-
etition frequency used in the present study. Furthermore,
it is unclear whether the estimates of the value functions,
achieved by comparing subjects’ choice preferences, reflect
the same valuation processes as an outcome that follows a
choice—the approach used in our study.

To mechanistically explain the peculiarly asymmetric
effect, we passed the outcomes experienced by each sub-
ject to a Reinforcement learning model, and investigated
the model’s behavior. The model replicated the behavior
of each subject following a reward, but due to its symmetry
had difficulties to account for the lack of modulation due to
the penalty magnitude (Fig. 5A). To account for this effect,
the model had to be modified by substituting the outcome
term O with a constant kpenalty that embodies a flat loss
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Fig. 9. Distinct natures of the effects of reinforcement and punishment on
behavior. Same format as in Figs. 4 and 8, for data pooled over the two
tasks.
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(Eq. (5)). Following this update, the model accurately
accounted for the subjects’ behavior (Fig. 5C). A similar
conclusion was drawn using a simpler, satisficing model
in which a loss also had to be substituted with kpenalty to
approximate the subjects’ behavior (Fig. 6A and C). This
finding suggests that the reward-prediction error (Eq.
(2)), the temporal difference, or other terms based on the
Rescorla–Wagner learning rule (Rescorla & Wagner,
1972; Sutton & Barto, 1998; Niv, 2009) that drive learning
in computational models of choice behavior, like in the
Reinforcement learning model here, may not be symmetric
to corresponding punishment-prediction error terms. In
this regard, interestingly, it has recently been found that
dopaminergic neurons in monkey ventral midbrain, which
have been long known to encode the reward-prediction
error (Schultz, 1998; Bayer & Glimcher, 2005; Schultz,
2007), do not encode the corresponding term for punish-
ments (Fiorillo, 2013). That is even though the magnitudes
of rewards and punishments were set to a subjectively
corresponding level (Fiorillo, 2013).

The result of Fiorillo (2013) is a demonstration of a neu-
ral representation of an asymmetry in the effects of
rewards and punishments in a brain region that encodes
the learning terms in computational models of operant
behavior. This finding together with our finding encour-
ages the investigation of how reward- and punishment-re-
lated asymmetries are encoded in the brain following
directly comparable reinforcers and punishers, such as
monetary outcomes. A candidate for such a neural effect
is the error-related negativity in cortical potentials that is
specifically observed following a subject’s error (Holroyd
& Coles, 2002; Frank, Woroch, & Curran, 2005). However,
errors do not necessarily lead to losses. Furthermore, it
has been found that cortical potentials encode the differ-
ence between a gain and a loss regardless of whether a
subject made an error or not (Gehring & Willoughby,
2002). The error-related negativity may therefore not be
a reflection of an asymmetric encoding of gains and losses.
In regard to the cortical encoding of the magnitude of a gain
or a loss, it was found that the event-related P300 potential
encodes the general effect of an outcome magnitude
(Yeung & Sanfey, 2004). In particular, for losses (but not
for gains), the neural effect of this potential pointed in
the direction opposite to that expected according to the
ordering [large loss < small loss]. However, it is difficult
to interpret the results of tasks that used relatively com-
plex gambles (Yeung & Sanfey, 2004; Gehring &
Willoughby, 2002). It would be interesting to record corti-
cal potentials in a task similar to ours in which subjects’
choices are not a complex function of subjects’ expecta-
tions about the outcome, and in which the magnitude of
an outcome is not confounded with subjects’ choice.

Various disciplines have converged on the view that
unpleasant, negative events or outcomes have subjectively
larger value than pleasant, positive events or outcomes
(Kahneman & Tversky, 1979; Baumeister, Bratslavsky,
Finkenauer, & Vohs, 2001). Bad outcomes invoke relatively
more attention than good outcomes, produce stronger
changes in mood or emotion, or demonstrate themselves
in relatively increased electrophysiological responses,

among other effects (Taylor, 1991; Rozin & Royzman,
2001; Baumeister et al., 2001). Of special importance—
and in line with our findings—a punishment of errors
appears to have stronger effects on learning than a
reinforcement of correct responses (Penney & Lupton,
1961; Meyer & Offenbach, 1962; Spence, 1966; Penney,
1967; Tindall & Ratliff, 1974; Costantini & Hoving, 1973).
Having investigated the effects of the reward and punish-
ment magnitudes using a simple paradigm, we now show
that penalties have a profoundly distinct influence on
choice behavior compared to rewards (Fig. 9).

It has been proposed that the unique effects of losses
may be due to a momentary increase in arousal and atten-
tion following a loss (Yechiam & Hochman, 2013).
According to that hypothesis, the increase in arousal and
attention generally heightens the sensitivity to subsequent
outcomes. This hypothesis cannot directly account for our
data because in our task gains and losses are randomly
interleaved (and occur in the probability ratio of 60:40).
Therefore, in this task, a momentary increase in arousal fol-
lowing a loss would affect a subsequent gain or a loss in a
similar manner. Yet, we observe a profound difference in
the effects of gains and losses. However, the arousal
hypothesis might be reformulated to potentially account
for the effects in our study. It is possible that an increase
in arousal is transient, and that following a loss such arou-
sal increase may drive switching behavior. Because a loss
can be harmful to an organism, there should be a mecha-
nism that reliably triggers an alternative action following
a loss. In a two-alternative choice task, the alternative
action is a choice switch. The validity of such hypothetical
mechanism should be investigated in the future.

We found that losses had 2–3 times stronger effects on
choice behavior than gains (Fig. 2). This result corroborates
the finding of a previous study that compared the effects of
gain and loss frequencies on choice behavior by modeling
molar behavior under concurrent superimposed schedules
of a gain or a loss (Rasmussen & Newland, 2008). The mod-
eling suggested that the effects of losses on choice behav-
ior were about 3 times more potent than the effects of
gains. It is to note that this particular finding operates
under the assumption that the default rate to repeat pre-
vious choice is 50%, which seems valid (Fig. 3A).

In the future, it will important to investigate also the
effects of no reward (reward = 0) and the effects of rewards
and penalties in the vicinity of that point, with high granu-
larity (less than the minimum of jj5cjj used here). This
would allow to asses the steepness of the apparent discon-
nect between the effects of rewards and penalties that fig-
ures so strikingly in our data (Fig. 9). Furthermore, it will
be important to investigate the effects of rewards and
penalties in a task in which subjects know that they will
be paid the earned sum.

In summary, we investigated the effects of the magni-
tudes of reward and punishment on behavior in simple
choice tasks in single trials. We found a marked asymme-
try in the effects of rewards and penalties on the choice
behavior. In contrast to reinforcement whose effect lin-
early scaled with the reward magnitude, the effect of pun-
ishment was flat, independent of the magnitude of a
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penalty. This profound disconnect suggests that reinforce-
ment and punishment represent distinct, not just oppo-
sitely signed factors in guiding behavior.
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