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How individuals make decisions has been a matter of long-
standing debate among economists and researchers in the life
sciences. In economics, subjects are viewed as optimal decision
makers who maximize their overall reward income. This frame-
work has been widely influential, but requires a complete knowl-
edge of the reward contingencies associated with a given choice
situation. Psychologists and ecologists have observed that indi-
viduals tend to use a simpler “matching” strategy, distributing
their behavior in proportion to relative rewards associated with
their options. This article demonstrates that the two dominant
frameworks of choice behavior are linked through the law of
diminishing returns. The relatively simple matching can in fact
provide maximal reward when the rewards associated with deci-
sion makers’ options saturate with the invested effort. Such sat-
urating relationships between reward and effort are hallmarks of
the law of diminishing returns. Given the prevalence of diminish-
ing returns in nature and social settings, this finding can explain
why humans and animals so commonly behave according to the
matching law. The article underscores the importance of the law
of diminishing returns in choice behavior.

choice behavior | rational choice theory | economic maximization |
neuroeconomics | matching law

People’s decisions define the future of individuals and social
groups. How to suitably model, understand, and predict indi-

viduals’ choice behavior has therefore been a matter of intense
research efforts involving multiple disciplines.

Economic models provide normative prescriptions of how
individuals should make decisions. According to these models,
individuals make decisions in order to maximize their expected
reward, utility, or income (1–3). For example, in prospect the-
ory (4), subjects maximize the expected utility of potential deci-
sion outcomes. The expected utility is computed as the sum of
the outcomes’ values weighted by the probabilities that the indi-
vidual outcomes will occur. Within such maximization models,
Bayesian decision theories can be used to dictate how subjects
should optimally compute the individual probability terms (5).
Despite the normative appeal of such maximization models, it
has been unclear whether organisms are capable of implement-
ing and acting on the complex computations prescribed by these
models (6–8).

Researchers in psychology, ecology, sociology, and neuro-
science found evidence for a relatively simpler model for decision
making. It has been found that decision makers tend to distribute
their behavior in proportion to relative rewards associated with
their options (3, 8–16). The match between the behavioral and
reward distributions, B

i

B1+B2+...+B

n

= R

i

R1+R2+...+R

n

, where B
i

is
the rate of behavior allocated at option i , and R

i

is the corre-
sponding rate of the obtained reward, has come to be known
as the “matching law” (8, 9, 11, 13, 14). Analogously to eco-
nomic models, R

i

can also represent utilities. This way, matching
may capture a wide range of decision conditions while remaining
relatively compact (14, 17). However, matching has been crit-
icized for lacking a theoretical basis; matching is an empirical
phenomenon (17–19).

Which of these models is the more appropriate to capture and
predict choice behavior has been a subject of substantial debate
(7, 8, 18–22). In some cases, subjects maximize and do not match
(23, 24), whereas in other cases subjects match even though max-
imization would be a better strategy (3, 20, 25, 26). Psychologists
have compared matching and maximization in tasks that used spe-
cific schedules of reinforcement (24, 27, 28), but whether the two
models can be linked analytically at a general level has remained
elusive. The present article turns matching and maximization face
to face and at a general level. By doing so, it identifies a connec-
tion between the economic and psychological frameworks, and
the nature of the connection provides an explanation for why
humans and animals so often follow the matching strategy.

Results
Optimal Decision Making. An optimal decision maker distributes
her effort across options such as to maximize the total harvested
reward. When effort E

i

allocated at option i yields reward rate
R

i

(E
i

), the total reward rate the decision maker obtains for a
specific distribution of effort among her n options amounts to
R1(E1) + R2(E2) + . . .+ R

n

(E
n

). The total effort that an indi-
vidual can invest is limited,

P
i

E
i

=E
max

. Given that, reward
optimum is attained (Methods) when dR1(E1)

dE1
= dR2(E2)

dE2
= . . . =

dR

n

(E
n

)
dE

n

. A decision maker can maximize her total reward by
equalizing marginal reward per effort dR(E)

dE

across her options.
R, the expected rate of reward, is in this article for simplicity
referred to as “reward.”

Matching Behavior. Humans and animals often follow a matching
strategy (3, 8–16), distributing their behavior B

i

in proportion
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to relative rewards R
i

associated with their options,
B

i

B1+B2+...+B

n

= R

i

R1+R2+...+R

n

. This “matching” equation (9, 11)
can be equivalently written as R1

B1
= R2

B2
= . . . = R

n

B

n

. Further-
more, noting that behavior B embodies effort E , matching can
be stated as R1

E1
= R2

E2
= . . . = R

n

E

n

. It becomes apparent that when
subjects match, they equalize average reward per effort R

E

across
their options. When the value of an option i , V

i

, is defined as
the ratio of the obtained reward per the invested effort, V

i

= R

i

E

i

,
matching equalizes the values V

i

=V across the choice options.

Maximization–Matching Relation. Given these observations, max-
imization and matching align when marginal reward per effort
associated with an option is a strictly monotonic function g of
average reward per effort associated with the option, dR

dE

= g
�
R

E

�

(Methods). The marginal and average quantities for an example
relationship between reward and effort are illustrated as dotted
and dashed lines in Fig. 1, respectively.

This formulation empowers us to identify the relationships
(henceforth referred to as contingencies) between reward and
effort R(E) for which the two approaches provide an equal
amount of reward. The contingencies emerge simply by defin-
ing a particular form of the strictly monotonic function g . There
are only two requirements (Methods) on g to yield contingencies
for which matching delivers maximal reward: (i) g(V ) must have
its derivative greater than zero and (ii) it must be g(V )<V .
Simple forms of g (Methods) yield contingencies including
R(E)= aR ln(E) + c with a > 0, R(E)=REa with 0< a < 1,
and R(E)= E

a+cE

with a, c> 0, where R is the reward associ-
ated with an option, E is the invested effort, and a and c are
constants.

These derived contingencies provide tight fits to the relation-
ship between reward and effort in a dominant task used to
study choice behavior (8, 9, 13). In particular, in the variable-
interval schedule task (Fig. 2), an increase in a subject’s effort
generally leads to an increase in the harvested reward. How-
ever, at a certain point the reward saturates and shows dimin-
ishing returns with additional effort (Fig. 2). The derived R(E)
contingencies for which matching is optimal provide excellent
fits to the diminishing-returns character of this task, explain-
ing 97.8%, 95.9%, and 99.7% of variance, respectively (Fig. 2).
It is apparent that these solutions, just like the reward–effort

Fig. 1. Relationship between reward maximization and matching. Reward-
maximizing behavior and matching align when marginal ( dR

dE ) and aver-
age ( R

E ) reward per effort for each option are related through a strictly
monotonic function. This function can be distinct from identity, and so the
marginal (dotted line) and average (dashed line) quantities can have differ-
ent slopes.

Fig. 2. Relationships between reward and effort for which matching is
optimal exhibit diminishing returns. Choice behavior has often been stud-
ied using the variable-interval schedule task. In this task, a single reward
is scheduled at an option at a specific rate, such as, on average, one per
minute here. Once scheduled, the reward is available until a subject chooses
the option. A simulation of the reward harvested in this task (black curve)
shows that when a subject chooses an option at the same rate as the sched-
ule rate (once per minute), reward is delivered on average in 50% of the
cases, as expected. Furthermore, as expected, investing more effort leads to
more reward. Nonetheless, at a certain point, there are diminishing returns.
The diminishing-returns character of the data can be well captured with the
derived reward–effort contingencies, exemplified by three particular func-
tions (colored curves). A logarithmic function (R(E) = aR ln(E) + c) explains
97.8% of variance in the data, a Cobb–Douglas function (R(E) = REa) 95.9%
of variance, and a hyperbola (R(E) = E

a+cE ) 99.7% of variance. Similarly tight
fits are observed also for other reward scheduling rates.

profile of the variable-interval schedule task, exhibit diminishing
returns.

This, in fact, turns out to be a general finding. For matching to
provide a reward maximum, the reward–effort contingencies of
the choice options must exhibit diminishing returns (see Methods
for proof). This finding ties the matching law, deemed by many a
fundamental principle underlying choice behavior (3, 11, 12, 14)
with economic maximization through a surprising link—the law
of diminishing returns.

This conclusion holds also in environments in which rewards
are stochastic and for maximization metrics that explicitly incor-
porate probabilistic outcomes. For instance, when rewards R

i

are delivered with probabilities p
i

, an optimal decision maker
distributes her effort to maximize the expected value of reward
over the individual options, E [R] = p1R1(E1)+p2R2(E2)+. . .+
p
n

R
n

(E
n

). Diminishing returns turn out to be a critical require-
ment for matching to be optimal also under this optimization
criterion (SI Methods). In addition, the E [R] criterion can
be rewritten to accommodate expected utility (4, 5), and the
same connection between matching and diminishing returns is
observed (SI Methods).

Discussion and Conclusions
The matching law has been an influential description of choice
behavior of animals and humans (3, 8–15), but how this principle
relates to the maximization apparatus of economic theories and
why individuals so often adopt matching have been unclear. This
article notes that reward depends on the invested effort and iden-
tifies the reward–effort contingencies for which matching is an
optimal choice strategy. It is found that the contingencies for
which matching provides a reward maximum share one striking
commonality: They exhibit diminishing returns. In these cases
(e.g., Fig. 2), the harvested reward increases as a function of the
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invested effort up to a point where additional investment con-
fers a relatively small marginal benefit. The law of diminishing
returns (29, 30) turns out to be an intriguing link that connects
the psychological matching law with economic maximization.

The finding that matching is crucially based on diminishing
returns was not obviously derivable from previous literature.
The present study arrives at this finding by developing a frame-
work that relates matching and optimization at a general level,
by providing a complete space of solutions for which match-
ing is optimal and by deriving the requirements for matching to
attain reward maxima. Previous studies identified only two spe-
cific solutions, R(E)=REa and R(E)= E

a+cE

(20, 21, 27). In
addition, these specific solutions were identified only as those
for which matching can attain a critical point in the reward land-
scape, which can be a maximum but also a minimum or a sad-
dle point. The present study shows that framing the problem at
a general level and providing the requirements for matching to
attain reward maxima prove crucial for uncovering the involve-
ment of diminishing returns (proof in Methods).

The finding that matching critically rests on situations with
diminishing returns brings us to the question of how commonly
diminishing returns figure in nature and human society. The law
of diminishing returns (29, 30) traces its history back to Turgot
who discovered that agricultural output progressively decreases
with increasing quantities of invested capital and labor (31). The
idea has subsequently been elaborated by economists such as
Malthus and Ricardo. The law of diminishing returns now lies at
the heart of many branches in economics, including production,
investment, and economic growth theories (32–35). For exam-
ple, the present article identifies the Cobb–Douglas function
(R(E)=REa), often used to capture the diminishing returns on
input labor in regard to production output, as one of the solu-
tions for which matching is optimal. For matching to be optimal,
the exponent a of effort (labor in this case) must be 0< a < 1
(Methods), just as prescribed by the Cobb–Douglas function.
This constitutes diminishing returns. Exemplified in production,
if two or more production processes can be described by a Cobb–
Douglas function with equal exponents a , then matching guar-
antees an optimal distribution of labor between the processes. In
this case, to maximize the total production, the matching strategy
allows a manager to simply equalize the average production per
total labor allocated within each production process.

The findings of this article also apply to ecology. Consider a
predator who must decide how to distribute her foraging effort
between sources of prey. Foraging or harvest situations com-
monly involve diminishing returns (36). For example, either the
predator gradually depletes the prey or the regeneration of a
resource saturates due to factors such as crowding. This article
shows that situations of diminishing returns allow the predator
to distribute her effort effectively according to the matching law,
equalizing the value (the obtained reward per invested effort) of
each source. If in source 2 she obtains twice the amount of prey
per foraging effort as in source 1, she spends twice the amount
of effort on source 2 compared with source 1. The major ben-
efit of this approach is that it is simple. The predator visits the
sources to determine their value and distributes her effort to
harvest equal value from both (37, 38). This is in contrast to a
reward-maximizing agent that must learn about the outcomes of
all possible allocations of effort across the sources and compute
derivatives to evaluate the marginal reward per effort across the
sources (39). In situations of diminishing returns like this, this
article shows that matching represents an effective heuristic to
maximizing reward income.

Diminishing returns also apply to situations that rest on tem-
poral, financial, and mental effort. For instance, when effort
involves time (E =T ), the value terms take the form V = R

T

,
which represents hyperbolic temporal discounting (40). In this

regard, this article reveals that in situations in which the invested
time reaches diminishing returns, the hyperbolic discounting of
temporal effort embodies an optimal value function for deci-
sions concerned with how to allocate time across choice options.
Analogous reasoning applies to monetary investment and men-
tal effort. In situations of diminishing returns, the present article
suggests that making a choice according to the matching law con-
stitutes a good strategy.

Matching is not a ubiquitous phenomenon. There are situa-
tions, such as those modeled by random (variable) ratio sched-
ules, in which the reward rate R(E) increases proportionally with
effort E . In such situations with nondiminishing returns, accord-
ing to this article, subjects should not match (Methods). Indeed,
subjects in such cases commonly converge on almost exclusively
choosing the richer alternative (23, 24). Therefore, the presence
or absence of diminishing returns in a given task can be used
as an indicator of whether subjects should or should not exhibit
matching.

Diminishing returns embody a necessary condition for match-
ing to provide maximal total reward harvested. This is not at the
same time a sufficient condition; one can find examples of sat-
urating functions for which matching does not imply a reward
maximum. Such saturating functions can nonetheless be approx-
imated with functions derived using specific forms of the gener-
ator function g . Thus, the extent to which diminishing returns
present a sufficient condition for matching to maximize reward
rests on the extent and variety of the functions that can be gen-
erated using g .

In addition to illuminating the relationship between matching
and reward maximization, this article also contributes to the body
of research on effort-based decision making, in two ways. First,
in the present framework, effort is treated as a resource instead
of a variable with negative valence. Second, it is shown that
computing value V of an option as reward per effort, V = R

E

,
and operating on such value representation through matching
can approach, for contingencies of diminishing returns, maxi-
mal reward. The fractional representation V = R

E

circumvents
the difficulty to express reward R and effort E on the same scale
(41). Intriguingly, the fractional representation of value, V = R

E

,
has been found to be encoded in specific regions of the brain
(42, 43).

Reward maximization represents a behavioral equilibrium
characterized by equalized marginal reward per unit of effort
across the choice options. Which optimization strategy may
result in such an equilibrium has been a matter of debate (16,
18, 44). In stochastic environments, one of the main candidate
frameworks that can lead to reward maximization has been the
Bayesian decision theory. According to this formalism, subjects
make decisions such as to maximize the expected utility, which
incorporates probability terms that model uncertain relation-
ships between decisions and outcomes (5, 45). The Bayesian
framework provides an optimal prescription for how individu-
als should update their probability estimates given prior experi-
ence and recent evidence. Although the neuronal computations
underlying Bayesian inference appear to be biologically plausi-
ble (5, 46), it remains to be seen whether such computations
can be combined with utility representations to provide the maxi-
mization metrics necessary to guide optimal decisions in complex
choice situations (4, 5).

Matching also represents a behavioral equilibrium, character-
ized by equalized average reward per effort across the choice
options. Several behavioral strategies have been shown to result
in matching (16, 47–50). One of the leading candidates, directly
derived from matching, has been melioration (47, 51). Accord-
ing to melioration, decision makers assess, over a certain time
period, the value (reward per effort) of each option and adjust
their effort, with certain frequency, to the option with the
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highest value. Equilibrium is achieved and subjects match when
the values (reward per effort) are equalized across the options.
In contrast, optimization, the process that leads to reward max-
imization, continuously reallocates effort to the option with the
highest marginal reward per effort. Equilibrium is achieved when
the marginals are equal across the choice options (Optimal Deci-
sion Making). There are two major advantages of melioration
over optimization. First, evaluating reward that has cumulated
over a certain time period reduces noise in the reward income
in stochastic environments. Second, because melioration oper-
ates on a certain time period, effort can be adjusted with a fre-
quency corresponding to that time period; during optimization,
effort is adjusted at each point in time. Evaluating cumulative
values every so often is a biologically much more plausible strat-
egy compared with computing local derivatives at each point in
time. This paper shows that making decisions based on a certain
time period—inherent to melioration and matching—can con-
stitute a good strategy in choice environments with diminishing
returns.

Deciding between different classes of options, such as whether
to cook at home or eat out at a restaurant, involves a comparison
of utilities and efforts associated with the options. In this regard,
melioration as a simple behavioral strategy can be generalized to
represent utilities instead of reward rates (14, 17). In this gener-
alized model, subjects choose the option that provides the high-
est utility per effort (or per economic cost). In equilibrium, such
a strategy leads to matching of effort (or financial resources) to
the relative utilities.

In sum, the present article links two dominant frameworks of
choice behavior and finds that matching can be an efficient and
effective instantiation of economic maximization as long as the
choice environment features diminishing returns. The observa-
tions that humans and animals so often behave according to the
matching law now find footing in the law of diminishing returns.
In light of diminishing returns, matching becomes an efficient
heuristic to optimal decision making.

Methods
Reward and Effort in Variable-Interval Schedules of Reinforcement. The rela-
tionship between reward and effort in Fig. 2 was obtained using a simula-
tion of the variable-interval schedule task. In this task, a reward of a certain
magnitude is delivered at random intervals but at a constant overall rate.
For example, the data shown in Fig. 2 use a rate of 1 reward per minute.
The decision whether to schedule a reward or not at a certain time is gov-
erned by a Poisson process; each point in time has an equal probability that
a reward will be scheduled. Once a reward is scheduled, it remains avail-
able until a subject (a computer in this case) harvests it. The abscissa of the
plot (i.e., effort) provides the number of times per minute that the subject
checked whether there was a reward. The subject’s decision to check is also
driven by a Poisson process in which the probability of checking is the same
at any point in time.

Optimal Decision Making. This section derives how effort should be dis-
tributed among choice options to maximize the total reward harvested,
R1(E1) + R2(E2) + . . . + Rn(En), subject to the constraint that total effort of
a decision maker is limited,

P
i Ei = Emax. The criterion constitutes the total

reward to be maximized, independently of effort. Effort serves as a means
to maximize the total reward. This problem can be solved using the method
of Lagrange multipliers. The Lagrangian is in this case formulated as

L(E1, E2, . . . ,En, �) = R1(E1) + R2(E2) + . . . + Rn(En) + �(Emax �
X

i

Ei).

[1]

Setting the partial derivatives to 0, we get

@L
@Ei

=
dRi(Ei)

dEi
� � = 0, [2]

and so

dRi(Ei)
dEi

= �

for a certain �. This means that
dR1(E1)

dE1
=

dR2(E2)
dE2

= . . . =
dRn(En)

dEn
. [3]

Eq. 3 dictates how effort should be allocated to attain a critical point in
the reward landscape. This can be a maximum, a minimum, or a saddle
point. To obtain a reward maximum, the leading principal minors of the
bordered Hessian matrix corresponding to Eq. 1, evaluated at critical points,
must alternate in sign, with the first minor (of order 3) showing a positive
sign (34).

Let us label d2Ri (Ei )

dE2
i

= R00
i (Ei) at a certain critical point Ei . The bordered

Hessian for Eq. 1 is

HB(E1, E2, . . . ,En) =

2

6666664

0 �1 �1 . . . �1
�1 R00

1 (E1) 0 . . . 0
�1 0 R00

2 (E2) . . . 0
...

...
...

. . .
...

�1 0 0 0 R00
n (En)

3

7777775
.

For two options, the leading principal minor of order 3 is equal to

det HB(E1, E2) = �(R00
1 (E1) + R00

2 (E2)).

This leading principal minor must be positive, so it must be

R00
1 (E1) + R00

2 (E2) < 0.

This result leads to two important arguments that are used below. First, for
a critical point to embody a reward maximum—so that the above equation
holds—at least for one option and at least for some value of Ei the sec-
ond derivative R00

i (Ei) must be R00
i (Ei) < 0. Second, if for any Ei and for both

options R00
i (Ei) < 0, then the above equation always holds and the critical

point is guaranteed to be a maximum.
The same two arguments also hold for choice situations that feature

three and more options. For example, for three options, the leading princi-
pal minor of order 4 is equal to

det HB(E1, E2, E3) = �(R00
1 (E1)R00

2 (E2) + R00
1 (E1)R00

3 (E3)

+ R00
2 (E2)R00

3 (E3))

and it must be negative. Thus, it must be

R00
1 (E1)R00

2 (E2) + R00
1 (E1)R00

3 (E3) + R00
2 (E2)R00

3 (E3) > 0,

and the conditions associated with the principal minors of order 3 must also
hold. Thus, again, for a critical point to represent a reward maximum, at
least for one option and at least for some value of Ei must R00

i (Ei) < 0. And,
if for any Ei and for all three options R00

i (Ei) < 0, then the above equation
evaluates positive, and so the critical point is a maximum. Analogously, for
four options, it must be

R00
1 (E1)R00

2 (E2)R00
3 (E3) + R00

1 (E1)R00
3 (E3)R00

4 (E4)

+ R00
1 (E1)R00

3 (E3)R00
4 (E4) + R00

2 (E2)R00
3 (E3)R00

4 (E4) < 0,

and the conditions associated with the principal minors of lower orders must
also hold. Here, the sum of all triplets must be negative; for five options,
the sum of all quadruplets must be positive, and so on. Each additional
option adds an additional term in the multiples; if each such term is negative
(i.e., the second derivative R00

i (Ei) < 0 for all i), the expression flips sign, as
required. Thus, it is apparent that the two arguments we initially made for
two options hold for any number of options in this constraint-optimization
problem.

Matching Behavior. Behavior according to the matching law, Bi
B1+B2+...+Bn

=
Ri

R1+R2+...+Rn
, where Bi is the rate of behavior allocated at option i and Ri

is the corresponding rate of the obtained reward, can be equivalently writ-
ten as R1

B1
=

R2
B2

= . . . = Rn
Bn

. Furthermore, noting that behavior B embodies

effort E, the matching law can be stated as R1
E1

=
R2
E2

= . . . = Rn
En

.

Maximization–Matching Relation. Matching and optimization align when
marginal reward dR

dE associated with an option is a strictly monotonic func-
tion g of the corresponding matching term R

E :

dR
dE

= g
✓

R
E

◆
. [4]

To see why, incorporating Eq. 4 into Eq. 3 leads to dR1(E1)
dE1

= g
⇣

R1(E1)
E1

⌘
=

dR2(E2)
dE2

= g
⇣

R2(E2)
E2

⌘
= . . . = dRn (En )

dEn
= g
⇣

Rn (En )
En

⌘
. A strictly monotonic
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function is invertible. Inverting g, we obtain

R1(E1)
E1

=
R2(E2)

E2
= . . . =

Rn(En)
En

,

which represents the matching law.
Having turned the matching law and optimization face to face, we can

identify the contingencies between reward and effort, R(E), for which these
two models align.

Reward–Effort Contingencies for Estimated Reward Returns. Let us assign the
matching terms Ri

Ei
a value function V =

Ri
Ei

. In this expression, the reward Ri

associated with an option can be either an estimate or an actual return. Let
us first deal with the former case and label a subject’s estimate of Ri as R̂i .

For a simple case of g(V) = aV , Eq. 4, now becoming dRi (Ei )
dEi

= a R̂i
Ei

, yields the
following reward–effort contingency:

Ri(Ei) = aR̂i ln(Ei) + ci. [5]

Here, R̂i is the subject’s estimate of the reward associated with option i, and
ci and a are arbitrary constants.

Reward–Effort Contingencies for Actual Reward Returns. Let us now consider
the cases in which subjects match their response distribution to the actual
returns obtained from choosing an option. In such cases, the value func-
tion takes the form V(Ri(Ei), Ei) =

Ri (Ei )
Ei

, where Ri(Ei) is the actual reward
obtained for effort Ei exerted at option i. For g(V) = aV , Eq. 4, now becom-
ing dRi (Ei )

dEi
= a Ri (Ei )

Ei
, yields the solution Ri(Ei) = ciEa

i . For ci interpreted as
the amount of reward Ri obtained for unitary effort Ei = 1, the solution
becomes

Ri(Ei) = RiE
a
i . [6]

For this function, matching yields a reward maximum when the exponent
a is 0 < a < 1 (see below). Thus, Eq. 6 embodies the Cobb–Douglas func-
tion that was originally applied to model diminishing returns in production
output as a function of the input labor (32). This function has also been
identified to relate reinforcement and behavior in psychology (21).

As another example, for g(V) = aV2, Eq. 4 generates a reward–effort
contingency

Ri(Ei) =
Ei

a + ciEi
. [7]

This solution corresponds to a derivation of a feedback function for the
variable-interval schedule task (52).

All other reward–effort contingencies can be generated by defining a
specific g(V). The admissible forms of this function are provided next.

Reward Maxima and Diminishing Returns. Matching provides a critical point
in the reward landscape for every solution of Eq. 4. It will be shown here
that whether the critical point is a maximum, a minimum, or a saddle point
depends solely on the properties of the generator function g(V). Further-
more, it will be shown that for matching to deliver a reward maximum, the
reward–effort profiles of all choice options must show diminishing returns.
The proof follows from evaluating the second derivative of R(E).
Estimated reward returns. Applying the chain rule, the derivative of Eq. 4
with respect to effort for estimated rewards R̂ is equal to

d2R(E)
dE2

= g0
✓

R̂
E

◆✓
�

R̂
E2

◆
.

Optimal Decision Making showed that for our constraint optimization prob-

lem to yield a reward maximum, it must be d2R(E)
dE2 < 0 for at least one option

and for at least some value of E. To meet that requirement, because in
the above expression � R̂

E2 < 0, it must be g0( R̂
E ) > 0 for at least one option

and for at least some E. But because of matching, the g0 argument R̂
E is

equal for all options because R̂1
E1

=
R̂2
E2

= . . . = R̂n
En

= V . It follows that it

must be g0(V) > 0, and this value is equal for all options. Thus, whether
matching yields a reward maximum or a minimum depends solely on this
requirement on g. Furthermore, when this requirement is fulfilled, it is

apparent that d2Ri (Ei )

dE2
i

< 0 for all options and for any values of Ei . This

proves that the reward–effort contingencies for all options are negatively
accelerated, i.e., show diminishing returns, and they do so for all values
of effort.

Actual reward returns. The proof proceeds in a similar fashion for actu-
ally obtained reward returns R(E). In this case, the derivative of Eq. 4 with
respect to effort is

d2R(E)
dE2

= g0
✓

R(E)
E

◆ dR(E)
dE E � R(E)

E2

!

= g0
✓

R(E)
E

◆ dR(E)
dE � R(E)

E

E

!
.

Here, according to Eq. 4, dR(E)
dE = g( R(E)

E ). Thus,

d2R(E)
dE2

= g0
✓

R(E)
E

◆ 
g( R(E)

E ) � R(E)
E

E

!
.

The beauty of matching shines through this equation. Given that E > 0, it is
apparent that the sign of the right side of the equation is solely a function
of the matching term V = R(E)

E :

d2R(E)
dE2

= g0(V)
✓

g(V) � V
E

◆
.

Again, Optimal Decision Making showed that for a critical point to repre-

sent a reward maximum, it must be d2R(E)
dE2 < 0 for at least one option and

at least for some value of E. To meet that requirement, and taking into
account E > 0, there are two possibilities: (i) g0(V) > 0 and g(V) < V and (ii)
g0(V) < 0 and g(V) > V . The second possibility is inadmissible because for
a general V > 0, a function g(V) cannot be decreasing while maintaining
a value above the diagonal g(V) = V . This leaves us with the first set of
requirements, g0(V) > 0 and g(V) < V . The resulting space that g is allowed
to span is charted in Fig. 3.

For matching, V =
R1(E1)

E1
=

R2(E2)
E2

= . . . = Rn (En )
En

is the same for all

options i. Thus, when d2Ri (Ei )

dE2
i

= g0(V)
⇣

g(V)�V
Ei

⌘
assumes a positive or a nega-

tive sign, it does so equally for all options, and the sign is governed solely by
the properties of g(V). For matching yielding a reward maximum (g0(V) > 0

and g(V) < V), it is then apparent that d2Ri (Ei )

dE2
i

< 0 for all options and for any

Ei . This proves that all options provide diminishing returns, and they do so
for all values of effort.

Specific Examples. The previous section showed that matching provides a
reward maximum when g0(V) > 0 and, for actual reward returns, g(V) < V .
These requirements constrain the parameters of the solutions and there-
fore also dictate the nature of the solutions. For instance, in Eqs. 5 and 6 for

Fig. 3. Generation of solutions for which matching yields reward maxima.
For matching to deliver a reward maximum, the generator function must
have its derivative greater than zero (g0(V) > 0), and in addition, for actual
reward return situations, it must be g(V) < V . Combined with the fact that
for matching, V = R

E > 0, the space of the admissible g(V) values is high-
lighted in green.
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which g(V) = aV , g0(V) > 0 requires that a > 0. It then becomes obvious that
a reward–effort function aR̂ ln(E) shows diminishing returns with increasing
effort E. As another example, in Eq. 6, in addition to a > 0 that again follows
from g0(V) > 0, the requirement g(V) < V dictates that aV < V and so a < 1.
It is apparent that a reward–effort function REa with 0 < a < 1 also shows
diminishing returns. And, in Eq. 7, the g(V) requirements on a reward maxi-
mum impose a > 0 and ci > 0. It is easy to see that a reward–effort function

E
a+ciE

with a, ci > 0 also shows diminishing returns.
The previous section proved that this is a general finding. For matching

to deliver a reward maximum, the reward–effort contingencies of all choice
options must show diminishing returns.

Increasing Returns. It is worth also considering the complement, i.e., the
possibility that matching might be optimal under situations of increas-
ing (and not diminishing) returns. Increasing returns for an option j imply
d2Rj (Ej )

dE2
j

= Rj(Ej)00 > 0. Reward Maxima and Diminishing Returns showed that

when Eq. 4 is satisfied and matching holds, d2Ri (Ei )

dE2
i

exhibits the same sign for

all options i and for all values of effort Ei . Under these conditions, it follows

that when
d2Rj (Ej )

dE2
j

> 0 for an option j, it must be d2Ri (Ei )

dE2
i

= Ri(Ei)00 > 0 for all

options i. In this case, the principal minors of the bordered Hessian (Opti-
mal Decision Making) become all negative. But negative principal minors
constitute a sufficient condition for a reward minimum (34). Thus, increas-
ing returns do not allow for matching to be optimal; diminishing returns

are indeed required. An additional consequence of d2Ri (Ei )

dE2
i

exhibiting the

same sign for all options is that the leading principal minors (Optimal Deci-
sion Making) either alternate in sign—which is a sufficient condition for a
reward maximum—or are all negative—which is a sufficient condition for a
minimum. A third possible outcome—a saddle point—would require a dis-
tinct pattern of signs of the principal minors (34).
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SI Methods
Probabilistic Reward Outcomes. Rewards in natural settings are
often stochastic. The stochasticity can manifest in two ways.
Either the reward itself is delivered with a certain probability or
the conversion of a subject’s decision to a choice is probabilistic.
In both cases, a decision i provides reward Ri with probability
pi . In what follows, it is shown that matching rests on diminish-
ing returns even in situations in which rewards are delivered in
a probabilistic way and subjects maximize the expected value of
the reward.

Optimal decision making with probabilistic rewards. When rewards
Ri are delivered with probabilities pi , an optimal decision maker
distributes her effort to maximize the expected value over the
reward options,

E [R] = p1R1(E1) + p2R2(E2) + . . .+ pnRn(En), [S1]

subject to the constraint that total effort of the decision maker is
limited,

P
i Ei =Emax.

Using the method of Lagrange multipliers to solve this prob-
lem, the Lagrangian is in this case formulated as

L(E1,E2, . . . ,En ,�) = p1R1(E1) + p2R2(E2) + . . .

+ pnRn(En) + �(Emax �
X

i

Ei). [S2]

Setting the partial derivatives to 0, we get

@L
@Ei

= pi
dRi(Ei)
dEi

� � = 0,

and so

pi
dRi(Ei)
dEi

= �

for a certain �. This means that

p1
dR1(E1)

dE1
= p2

dR2(E2)
dE2

= . . . = pn
dRn(En)

dEn
. [S3]

Eq. S3 dictates how effort should be allocated to attain a crit-
ical point in the reward landscape. This can be a maximum, a
minimum, or a saddle point. To obtain a reward maximum, the
leading principal minors of the bordered Hessian matrix corre-
sponding to Eq. S2, evaluated at critical points, must alternate in
sign, with the first minor (of order 3) showing a positive sign (34).
As in Methods in the main text, let us label d2Ri (Ei )

dE2
i

=R00
i (Ei) at

a certain critical point Ei . The bordered Hessian for Eq. S2 is

HB (E1,E2, . . . ,En) =

2

66664

0 �1 �1 . . . �1
�1p1R

00
1 (E1) 0 . . . 0

�1 0 p2R
00
2 (E2). . . 0

...
...

...
. . .

...
�1 0 0 0 pnR

00
n (En)

3

77775
.

For two options, the leading principal minor of order 3 is equal to

det HB (E1,E2) = �(p1R
00
1 (E1) + p2R

00
2 (E2)).

For a critical point to represent a maximum, this leading princi-
pal minor must be positive, so it must be

p1R
00
1 (E1) + p2R

00
2 (E2) < 0.

Because pi > 0, it is easy to see that the same two observations
we made in the main text hold also in this case. First, for a critical
point to represent a reward maximum—so that the above equa-
tion holds—at least for one option and at least for some value of

Ei the second derivative R00
i (Ei) must be R00

i (Ei)< 0. Second, if
for any Ei and for both options R00

i (Ei)< 0, then the above equa-
tion always holds and a critical point is a maximum. In addition,
as in the main text, these two observations hold for any number
of options.

Matching Behavior. Matching can also be generalized to accom-
modate probabilistic reward, with subjects matching the expected
values of rewards over the individual options:

p1R1(E1)
E1

=
p2R2(E2)

E2
= . . . =

pnRn(En)
En

. [S4]

Matching–Optimization Relation. Analogously to choice situations
in the main text, matching and optimization in the probabilistic
reward settings align when

p
dR

dE
= g

✓
pR

E

◆
. [S5]

To see why, incorporating Eq. S5 into Eq. S3 leads to
p1

dR1(E1)
dE1

= g
⇣

p1R1(E1)
E1

⌘
= p2

dR2(E2)
dE2

= g
⇣

p2R2(E2)
E2

⌘
= . . . =

pn
dRn (En )

dEn
= g
⇣

pnRn (En )
En

⌘
. A strictly monotonic function is

invertible. Inverting g , we obtain
p1R1(E1)

E1
=

p2R2(E2)
E2

= . . . =
pnRn(En)

En
,

which represents the matching law in the expected value gener-
alization (Eq. S4).

The contingencies between reward and effort, R(E), for which
these two models align, are merely scaled versions of the solu-
tions provided in the main text, as shown next.

Reward–Effort Contingencies for Estimated Reward Returns. It is
easy to see that for a simple case of g(V )= aV , Eq. S5, now
becoming pi

dRi (Ei )
dEi

= a pi R̂i
Ei

, yields the same reward–effort con-
tingency as in the main text:

Ri(Ei) = aR̂i ln(Ei) + ci .

Reward–Effort Contingencies for Actual Reward Returns. Analo-
gous findings are obtained for cases in which subjects match
their response distribution to the actual returns obtained from
choosing an option. For g(V )= aV , Eq. S5, now becoming
pi

dRi (Ei )
dEi

= a piRi (Ei )
Ei

, again yields the same solution as in the
main text:

Ri(Ei) = RiE
a
i .

The solutions become generalized forms of those provided in
the main text when g(V ) is nonlinear. For example, for g(V )=
aV 2, Eq. S5 generates a reward–effort contingency

Ri(Ei) =
Ei

api + ciEi
.

Note that in this case the probability pi figures in the solution.
As in the main text, all other reward–effort contingencies can

be generated by defining specific forms of g(V ). The admissible
forms of this function, such that optimal decision making based
on probabilistic rewards delivers maxima and not minima or sad-
dle points, are provided next.

Reward Maxima and Diminishing Returns. It will be shown here that
for matching to deliver a maximum in the expected reward when
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rewards are probabilistic, the reward–effort profiles of all choice
options must show diminishing returns. As in the main text, the
proof follows from evaluating the second derivative of R(E).
Estimated reward returns. Applying the chain rule, the deriva-
tive of Eq. S5 with respect to effort for estimated rewards R̂ is
equal to

d2R(E)
dE2

=
1
p
g 0
✓
pR̂

E

◆✓
� pR̂

E2

◆
.

As in the main text, Optimal Decision Making showed that for
our constraint optimization problem to yield a reward maxi-
mum, it must be d2R(E)

dE2 < 0 for at least one option and for
at least some value of E . To meet that requirement, because
in the above expression p> 0, 1

p > 0, and � pR̂
E2 < 0, it must be

g 0( pR̂E )> 0 for at least one option and for at least some E .
But because of matching, the g 0 argument pR̂

E is equal for all
options because p1R̂1

E1
= p2R̂2

E2
= . . . = pn R̂n

En
=V . It follows that

it must be g 0(V )> 0, and this value is equal for all options.
Thus, whether matching yields a reward maximum or a minimum
depends solely on this requirement on g . Furthermore, when this
requirement is fulfilled, it is apparent that d2Ri (Ei )

dE2
i

< 0 for all
options and for any values of Ei . This proves that the reward–
effort contingencies for all options are negatively accelerated,
i.e., show diminishing returns, and they do so for all values
of effort.
Actual reward returns. The proof proceeds in a similar fash-
ion for actually obtained reward returns R(E). In this case, the
derivative of Eq. S5 with respect to effort is

d2R(E)
dE2

=
1
p
g 0
✓
pR(E)

E

◆ 
p

dR(E)
dE E � R(E)

E2

!

=
1
p
g 0
✓
pR(E)

E

◆ 
p dR(E)

dE � pR(E)
E

E

!
.

Here, according to Eq. S5, p dR(E)
dE = g

� pR(E)
E

�
. Thus,

d2R(E)
dE2

=
1
p
g 0
✓
pR(E)

E

◆ 
g
� pR(E)

E

�
� pR(E)

E

E

!
.

The beauty of matching again shines through this equation.
Given that 1

p > 0 and E > 0, it is apparent that the sign of the
right side of the equation is solely a function of the matching
term V = pR(E)

E :

d2R(E)
dE2

=
1
p
g 0(V )

✓
g(V )� V

E

◆
.

As in the main text, Optimal Decision Making showed that for
a critical point to represent a reward maximum, it must be
d2R(E)
dE2 < 0 for at least one option and at least for some value

of E . As shown in the main text, this requirement is met for
g 0(V )> 0 and g(V )<V .

For matching, V = p1R1(E1)
E1

= p2R2(E2)
E2

= . . . = pnRn (En )
En

is

the same for all options i . Thus, when d2Ri (Ei )
dE2

i
= 1

pi
g 0(V )

⇣
g(V )�V

Ei

⌘
assumes a positive or a negative sign, it does so

equally for all options, and the sign is governed solely by the
properties of g(V ). For matching yielding a reward maximum
(g 0(V )> 0 and g(V )<V ), it is then apparent that d2Ri (Ei )

dE2
i

< 0

for all options and for any Ei . This proves that all options provide
diminishing returns, and they do so for all values of effort.

Together, all findings obtained for deterministic rewards in the
main text also hold in situations in which reward is probabilistic
and in which subjects operate on expected values of rewards.

Relationship to Prospect Theory. The formalism of maximizing the
expected value of reward (Eq. S1),

E [R] = p1R1(E1) + p2R2(E2) + . . .+ pnRn(En),

is closely related to the criterion of prospect theory (4).
In prospect theory, subjects maximize the expected utility in
the form

E [U ] = ⇡(P1)u(R1(E1)) + ⇡(P2)u(R2(E2)) + . . .

+ ⇡(Pn)u(Rn(En)),

where u is a utility function that operates on an outcome Ri , pi is
the probability that the associated reward is delivered, and ⇡ is a
function that transforms probability into its subjective perception
(4). When the function Ri(Ei) represents the utility of effort Ei

exerted at option i such that Ri(Ei)= u(Ri(Ei)), and when we
realize that ⇡ is a function that is the same for each option and
so pi =⇡(Pi), the two criteria are equal.

Note that in SI Methods, Reward Maxima and Diminishing
Returns, the proof of matching resting on diminishing returns is
very similar to that of the main text, with the exception of an addi-
tional multiplier 1

p . This term is positive because p> 0, and so the
sign consideration of the second derivative remains unchanged.
In prospect theory, the 1

p multiplier merely becomes 1
⇡(p) . This

term is also positive because ⇡(p)> 0 (4). This way, the prospect
theory-based generalization provides the same conclusion. Thus,
even in scenarios in which rewards are stochastic and in which
people behave to maximize their expected utility, matching can
be an optimal strategy as long as the choice environment features
diminishing returns.
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